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We report a general method for the investigation and quantification of delocalization in molecules. The method
is based on the anisotropy of the current-induced density (ACID). Compared to the current density, which
has been frequently used to investigate delocalization, the ACID approach has several advantages: it is a
scalar field which is invariant with respect to the relative orientation of the magnetic field and the molecule,
it is not a simple function of the overall electron density, it has the same symmetry as the wave function, and
it can be plotted as an isosurface. Several selected examples demonstrate the predictive power and the general
applicability of this method.

I. Introduction

Delocalization and conjugation1-3 are among the most
important concepts in chemistry. Chemists use them as a tool
in their every day work for the interpretation of chemical
phenomena and physical properties of molecules. Magnetic
criteria, such as the magnetic susceptibility, anisotropy or
exaltation of the magnetic susceptibility,4 and nucleus-indepen-
dent shifts5,6 have been widely used to quantify the “degree”
of aromaticity7 of various chemical systems. These methods,
however, are restricted to cyclic systems or only provide a single
number, which does not give information on contributions
located at different points in space.8 Current density maps,
therefore, have been applied to investigate magnetic properties
with spatial resolution in detail.9-18 There are, however, several
disadvantages to this approach. (1) The current density is a
vector field which graphically can only be represented in an
arbitrary chosen sectional plane. (2) The vector field depends
on the relative orientation of the molecule and the magnetic
field. An unambiguous choice of the plane and the magnetic
field is only possible in planar systems for which this method
has been almost exclusively used. (3) The most severe drawback
for the analysis of delocalization effects, however, is the fact
that the diamagnetic part of the current density simply maps
the electron density. The ultimately localized chemical system,
a single atom, exhibits strong ring currents in an external
magnetic field.

The anisotropy of the induced current density has been used
to prove the aromaticity in the transition state of an electrocyclic
reaction by Wallenborn et al.19 The authors propose a definition
of the anisotropy that avoids the ambiguous choice of a reference
plane in nonplanar cyclic systems. We now investigate the
method in detail20 and propose the use of the anisotropy of the
current-induced density (ACID) as a general method that is
applicable to any molecular system (not only cyclic systems).
The ACID can be interpreted as a representation of delocalized
electrons. It provides a simple way for the quantification of
conjugative effects and can be used for any type of conjugation
(not only aromaticity).

The ACID method is a useful tool in the hands of experi-
mental chemists to explain stereoelectronic effects in structures
(e.g., anomeric effect), the stereochemistry of reactions (e.g.,
regio- and stereochemistry in pericyclic reactions), and a number
of other properties of chemical systems.

II. Theoretical Method

A. Induced Current Density. The induced current density
JB(1) is given by

It can be computed by standard perturbation theory. The
resulting equation forJB(1) can be split in two terms, a
diamagneticJBd

(1) and a paramagnetic termJBp
(1):

WhereasJB(1) is independent of the gauge origin if a full basis
set is provided, the two separate termsJBd

(1) andJBp
(1) are not and

therefore do not have a physical significance except, however,
if one of the two terms vanishes.

B. Anisotropy of the Current (Induced) Density (ACID).
The anisotropyσ is defined as the standard deviation of the
eigenvaluesei of a matrix:

With ej ) 1/n∑iei and∑iei ) tr T we obtain
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For a three-dimensional case (n ) 3) the anisotropy of the
induced current density is calculated as

A real matrix T can be decomposed into a symmetric and
antisymmetric partT ) TS + TA. This yields for the anisotropy
of T:

The anisotropy of the antisymmetric part does not have physical
significance and can be neglected. Thus, the second term of eq
2.4 can be factorized and we obtain

This definition of the anisotropy of the induced current density
(∆TS

(1)) other than conventional methods21 includes the off
diagonal elements of the current density tensor (tnk,n * k). The
definition is identical with a formula that has been used by
Wallenborn et al.19,20 In asymmetric tops or especially systems
of D∞h or C∞V symmetry, two of the principal values oft are
identical:

Accordingly, the anisotropy function simplifies to

which is frequently used as an anisotropy definition.
C. Symmetry Properties of the Induced Current Density.

On the basis of eqs 1.2, 1.3, and 2.6 the symmetry of (a) the
vector field of the current density and (b) of the scalar field of
the anisotropy of the current density can be derived. To achieve
this, the diamagnetic and the paramagnetic parts of the current
density must be treated separately.

Symmetry ofJBd
(1). Provided that exact wave functions (com-

plete basis sets) are used, a free choice of the gauge origin is
possible. For the sake of simplicity the origin of the coordinate
system will serve as the gauge origin.

Except for the vector potentialAB, there are only scalar
parameters in the diamagnetic part of the current density (eq
1.2). All scalar parameters are constant except for the electron
density. The electron densityΨ0

2 always forms the basis of the
totally symmetrical irreducible representation of the point group
of the ground-state wave functionΨ0. Therefore, the symmetry
of JBd

(1) is only determined by the function of the vector
potentialABq. A magnetic field oriented in thezdirection defines

the vector potentialABz with the gauge originRB ) 0B (ıb, jb, andkB
are the unit vectors in thex, y, z directions):

The vector potentialsABx andABy are obtained by cyclic exchange:

The vector functionsABq, q ∈ {x,y,z} are characterized by the
fact that they define vectors which are tangential with respect
to concentric circles around the coordinate axisq (“curl”
function). The symmetry of such a function is identical with
the symmetry of the rotationRq with respect to the coordinate
axis q. SinceABq is always orthogonal toBB and becauseJBd

(1)

differs from Aq only by a factor, both assertions are also true
for JBd

(1). Both the rotational symmetry ofJBd
(1) and orthogonality

of JBd
(1) andBB are equivalent to the classical concept of induced

currents.
Symmetry of∆Td

(1). The first column of the tensorTd
(1)

corresponds to the vectorial current density induced by a
magnetic field in thex direction (txxıb + txyjb + txzkB), and the
second and third columns represent the corresponding vectors
in the y andz directions. Hence the elements of the current
density tensor can be easily calculated using eqs 1.2, 3.1, 3.2,
and 3.3.

Using eq 2.6, one can write

∆Td
(1) vanishes at all points in space. Therefore, the aniso-

tropy of the total current density can be written as the sum
of the anisotropies of dia- and paramagnetic currents
(which is normally not the case). In other words:the dia-
magnetic current density does not contribute to the aniso-
tropy!

The diamagnetic current density mainly represents the electron
density (eq 1.2). By forming the anisotropy of the current
density, we remove this unwanted information since we only
want to map the delocalized electrons. The remaining para-
magnetic current density tensor∆Tp

(1) is a function of the first-
order correction of the wave functionΨ(1). Expressed in
anthropomorphic terms: the anisotropy of the induced current
density represents the “answer” of the wave function to the
perturbation by the magnetic field.

Symmetry ofJBp
(1). The following considerations are based on

the condition thatΨ0 is totally symmetric in one of the Abelian
point groups. If this is the case, the coefficientsan in the linear
combinationΨ(1) are only different from zero if the wave
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functionsΨn are of a certain symmetry because the integral in
eq 3.7:

is only different from zero if the integrand is totally symmetric.
Since Ψ0 is totally symmetric,Ψn must be of the same
symmetry asĤ(1). The symmetry ofĤ(1) depends on the
magnetic field and corresponds to the symmetry of a rotation
Rq with repect to an axisq, which is parallel to the magnetic
field becauseĤ(1) includes the angular momentum operator (see
section 1).

Now it is possible to determine the position dependent part
of the summands ofJBp

(1), which is

The symmetry of the summands is identical because the same
functions and operators appear and because the direct products
commute in abelian point groups. SinceΨ0 also is totally
symmetric, the symmetry is only determined by the wave
function Ψn and the operator∇. As demonstrated above, the
rotationsRq can be used instead ofΨn. The symmetry of a
differentiation toq (q ∈ {x,y,z}) is identical to the symmetry of
the functionf ) q (the notationΓ(a) ) Γ(b) in the following
means thata and b form the basis of the same irreducible
representation):

In symmetry determinations of vector functions, one has to
consider that the transformation of the coordinate system does
not only effect the parameter of the function but also the
functional values. Therefore, the vector function

forms the basis of the totally symmetric point group in each
abelian point group because

or

with

is true for any symmetry operationD to which f is symmetrical
or antisymmetrical. In our case eq 3.9 simplifies:

In contrast to the diamagnetic partJBd
(1), the paramagnetic

current densityJBp
(1) does not necessarily haVe to be orthogonal

to the magnetic fieldbecause the vectorial part ofJBp
(1) does not

exhibit this restriction. Both termsJBd
(1) andJBp

(1) are symmetrical
to aCn axis parallel to the magnetic field if the point group of
the wave functionΨ0 contains a corresponding operation. In
other words, the paramagnetic term of the induced current
density forms the basis of the same irreducible representation
as the rotation around the Cartesian axis which is parallel to
the magnetic field.

Symmetry of∆Tp
(1). To determine the symmetry of∆Tp

(1), we
set up the current density tensor and a corresponding symmetry
equivalent tensor and used the results of eq 3.9. For a magnetic
field oriented in thex direction, we can write

The first (second, third) column of the tensorTp
(1) corresponds

to JBp
(1) if a magnetic field is applied in thex (y, z) directions.

From eq 3.9 andq ∈ {x,y,z} it can be concluded:

For Rq the following symmetry relationships are true

Consequently, the tensor has the following form:

Since the squares of the coordinate axes are always totally
symmetric, we can write

It is easy to show that the summands of the six sums in the
anisotropy eq 2.6 have the same symmetry, so they can be
treated as a set. Furthermore, all six sums are squared and
therefore the sum of the squares is totally symmetric. Conse-
quently,∆Tp

(1) is also totally symmetric within the point group
of the wave functionΨ0. The same is true for∆T(1) if the gauge
origin is selcted asRB ) 0B because, as shown above, the
diamagnetic term∆Td

(1) vanishes. Equation 3.18 summarizes
the derivation:
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For closed shell molecules in the ground state this means that
the ACID isosurface has the same symmetry as the molecule.
This is different from the current density itself which is of the
same symmetry as the rotation of one of the Cartesian axes
depending on the orientation of the magnetic field. The
symmetry properties are another advantage of using the ani-
sotropy of the current density over the current density for the
visualization of delocalization.

III. Applications

A. Computational Details.Approximations have to be used
to calculate the induced current density in molecules. We applied
the continuous set of gauge transformation (CSGT) method of
Bader et al.,10,11,22which is implemented in the GAUSSIAN98
program23 to calculate the current densities. Link 1002 was
modified to write the current density, which was transformed
into a rectangular grid (cube-file) and visualized with Gaussview
or the Persistance of Vision Raytracing-Software. All molecules
were optimized at the B3LYP/6-31G* level of theory and veri-
fied as stationary points using normal coordinate analysis. The
CSGT calculations were performed at the same level of theory.

B. Model Systems.In the following we investigate simple
model systems to reveal how the anisotropy of the current
density (ACID) can characterize delocalized systems.

Atomic Orbitals.Occupied atomic orbitals are model cases
of perfectly localized electrons. The calculation of the ACID
in these systems therefore is an important test for a method
describing and visualizing delocalized electrons.

In one-atomic systems, one can select a “natural” gauge origin
that gives rise to a vanishing paramagnetic partJBp

(1) of the
induced current density.24 The natural gauge is the position of
the nucleus and the origin of the coordinate system. Because
∆Td

(1) vanishes (eq 3.6) the ACID in all atomic systems at all
points in space is zero. In other words: Magnetic fields with
different orientations but of the same magnitude at the same
position induce currents of the same magnitude that are
perpendicular to the magnetic field.

Molecular Orbitals: σ Orbitals. The most simple model of
a σ bond is two interacting s orbitals at two different atoms,
which happens to be the case in the ground state of the hydrogen
molecule.

Group theoretical considerations indicate that the ACID in
H2 should be different from zero. As in the previous chapter
we select the gauge originRB ) 0B, which leads to a vanishing
∆Td

(1). To calculate∆Tp
(1), the integral

(see eq 3.7) has to be evaluated. This term is only different
from zero if ΨnĤ(1)Ψ0 is totally symmetric.Ψ0 is totally
symmetric and the operatorsĤx

(1), Ĥy
(1) and Ĥz

(1) each have the
symmetry of the rotation around the coordinate axis that is
parallel to the magnetic field. Within theD∞h point group, we
obtain the following symmetry relationships:

Γ(Ψn) denotates the symmetry of theΨn wave function. The

terms are only totally symmetric ifΓ(Ψn) hasΠg symmetry in
(4.1) and (4.2) andΣg

- in (4.3). Whereas the first condition can
be met, there is no wave function ofΣg

- symmetry.25 JBp
(1)

therefore vanishes if a magnetic field is applied in thezdirection.
∆Tp

(1) adopts the following form if one assumes that the
remaining elements of the tensor are not accidentally zero.

The anisotropy has also to be different from zero because of
the terms (txx - tzz)2, (tyy - tzz)2, (txz + tzx)2, and (tyz + tzy)2 (see
eq 2.6). This is generally true for molecules ofD∞h symmetry.
Figure 1 shows the calculated ACID isosurface of the hydrogen
molecule. The ACID is largest in the planeσh, which is
perpendicular to the line connecting both nuclei. The isosurface
has the shape of a torus. The toroidal topology of the ACID of
σ bonds is also found in larger molecules like methane or
cyclohexane. However, the ACID values ofσ bonds normally
are extremely small.

p Orbitals. The Πu
2 excited state of the hydrogen molecule

represents the simplest case of a bondingπ orbital (Figure 1).
Compared to theσ orbital, the ACID of theπ orbital is almost
2 orders of magnitude larger (note that for graphical reasons
the ACID’s in Figure 1 are plotted at very different isosurface
values). The topology of the isosurface is also toroidal but it
does not exhibit axial (D∞h) but planar (D2h) symmetry. The
much larger ACID of theπ compared to theσ bond is due to
the fact thatΨn, with symmetries other thanΠg, can lead to
nonvanishing coefficientsan. SinceΨ0 now hasΠg symmetry,
Ψn has to be ofΣg

+ (magnetic fields inx andy directions) or
Πg symmetrical (magnetic fields in thez direction) to give rise
to a nonzero contribution to the ACID.

C. Molecules.For illustration, the isosurface of the ACID
of cyclohexane, cyclohexene, cyclohexadiene, and benzene is
given in Figure 1. In agreement with the generally accepted
concept of delocalization, cyclohexane exhibits only a very small
anisotropy (toroidal areas around C-H and C-C bonds). In
cyclohexene the double bond is represented by a boundary
surface that encloses both sp2 carbon atoms. Consequently,
cyclohexadiene exhibits two boundary surfaces for both double
bonds that are connected, indicating conjugation between the
two double bonds. The ACID isosurface of benzene has the
topology of a torus and the current density vectors plotted on
top of the isosurface indicate a strong diamagnetic ring current.

Particularly advantageous compared to other approaches is
the ACID method in treating noncyclic and nonplanar conjuga-
tion. Figure 2 compares butadiene and vinylcyclopropane.
Cyclopropanes are known to exhibit partial double bond

an )
〈Ψn|Ĥ(1)|Ψ0〉

E0 - En

Γ(ΨnĤx
(1)Ψ0) ) Γ(Ψn) × Πg × Σg

+ ) Γ(Ψn) × Πg (4.1)

Γ(ΨnĤy
(1)Ψ0) ) Γ(Ψn) × Πg × Σg

+ ) Γ(Ψn) × Πg (4.2)

Γ(ΨnĤz
(1)Ψ0) ) Γ(Ψn) × Σg

- × Σg
+ ) Γ(Ψn) × Σg

- (4.3)

Figure 1. ACID of a prototypeσ andπ bond.

Tp
(1) ) (txx tyx 0

txy tyy 0
txz tyz 0) trs * 0, r,s∈{x,y,z} (4.4)
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character.26 Like double bonds but less pronounced, the Walsh
orbitals of cyclopropane undergo conjugation with neighboring
π systems. The extent of conjugation can be quantified by giving
the “critical” isosurface value at which the topology of the ACID
boundary surface (delocalized system) changes. The continuous
boundary surface enclosing the conjugating carbon atoms
between the two double bonds incis-butadiene breaks at an
isosurface value of 0.0684 and the double bond and the
cyclopropane ring incis-vinylcyclopropane are separated at
0.0519, indicating a weaker conjugation in the latter system.
Note that the cyclopropane ring exhibits a weak cyclicσ-type
conjugation,27,28 which is in agreement with earlier findings.

Even more subtle interactions like the anomeric effect can

be investigated (Figure 3). Conjugation between the lone pair
of the ring oxygen and the exocyclic C-O σ* orbital, which is
more favorable in the axial than in the equatorial conformation
is accounted for the preference of the former conformation in
2-hydroxy -and 2-methoxytetrahydropyranes.29 The different
extent of conjugation is indeed clearly visible in the ACID plot
of axial and equatorial 2-hydroxytetrahydropyran. The boundary
surface of the conjugating O-C-O part of the structure is
continuous in the axial conformation (critical isosurface value:
0.0579) and clearly separated between the lone pair oxygen and
the exocyclic C-O bond in the equatorial conformation (critical
isosurface value: 0.0469).

Homoaromaticity is another important type of conjugative

Figure 2. Isosurfaces of the anisotropy of the induced current density (ACID) of cyclohexane, cyclohexene, 1.3-cyclohexadiene, and benzene at
an isosurface value of 0.05. Current density vectors are plotted onto the isosurface. The vector of the magnetic field is perpendicular to the ring
plane (in the case of cyclohexane C1, C2 and the midpoint of the C4-C5 bond and in cyclohexene C2, C3 and the midpoint of the C5-C6 bond
define an approximate ring plane).
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interaction.30 In a number of cases it had been the subject of
controversial discussions.31 Homoconjugation has been invoked
to explain thermodynamic32 and NMR data of cyclohep-
tatriene.33 The ACID plot at an isosurface value of 0.027 clearly
confirms the through space interaction bridging the CH2 group
(Figures 4and 5).

D. Basis Set Dependence.Calculations of magnetic proper-
ties of molecules suffer from a limitation known as the gauge
problem. Since the magnetic perturbation is not invariant with
respect to translations, values of magnetic properties depend
on the choice of origin for the calculation, if approximate wave
functions are used. To overcome the gauge problem, either very
large basis sets are needed or gauge invariant procedures have
to be used. A number of different approaches have been
developed.34,35Even though the CSGT method achieves gauge
invariance by calculating the induced current density by

performing a gauge transformation for each point in space, basis
set convergence for absolute shielding constants is only observed
at large basis sets.35 To assess the basis set dependence of the
ACID method, we calculated the critical isosurface value at
which the two double bonds intrans-butadiene form separate
ACID isosurfaces (Table 1). Up to the 6-311+G(2df,3p) basis
there is no clear basis set convergence, but a 6-31G* basis is
obviously a good compromise between accuracy and compu-
tational cost in molecules of closed shell character.

IV. Conclusion

The ACID is an intuitive and generally applicable method
for the investigation and visualization of delocalization and
conjugation. It is directly derived from a quantum theoretical
quantity and does not include empirical parameters that have
to be fitted (or could be manipulated to achieve agreement
between theory and experiment). It does not represent the charge
distribution (the ACID value can be zero at points where the
electron density is large) but only electrons that are not localized
at the nuclei. As a tool for the investigation of molecular
properties, the ACID is complementary to the electrostatic
surface and the electron density, which provides information
about charge and steric interactions.
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